Group Theory

Subject: Discrete Structures

Dr. Hitesh Kumar Ranote

Subject Code: MCA-201

Assistant Professor

School of Basic and Applied Science

Introduction

• Group theory is the study of algebraic structures called groups, which play a fundamental role in mathematics and its applications.

Definition

A non empty set G, together with a binary composition * (star) is said to form a group, if it satisfies the following postulates:

- Closure: If $a, b \in G$, then $a * b \in G$
- Associativity: (a * b) * c = a * (b * c)
- Identity: There exists an e such that a * e = a
- Inverse: Every element has an inverse a^{-1} such that $a * a^{-1} = e$

Examples

- 1. Set of integers is a group under addition (Z, +) but under multiplication it is not a group.
- 2. Set if nonzero real numbers under multiplication (R^*, \times) is a group.
- 3. Set of natural numbers under addition is not a group because it does not satisfy existence of identity.

Types of Groups

Abelian Groups: A group G is called abelian (Commutative) group if a * b= b * a. Otherwise it is called non-abelian groups (non-commutative).

• Examples: General Linear group is non-abelian group.

Finite Group: If the set G is finite (i.e., has finite number of elements) it is called a finite group otherwise, it is called an infinite group.

Subgroups

- A subset H of a group G is called a subgroup if H itself forms a group under the same operation.
- If G is a group with identity element e then the subsets {e} and G are trivially subgroups of G and we call them the trivial subgroups. All other subgroups will be called non-trivial (or proper subgroups).

Examples

- 1. Set of even integers form a subgroup of (Z, +), which is a subgroup of (Q, +) which is a subgroup of (R, +).
- The subset $\{1, -1\}$ will be a subgroup of $G = \{1, -1, i, -i\}$ under multiplication.

Cyclic Groups

- A group G is cyclic if there exists an element a in G such that every element of G can be written as a^n for some integer n. It is denoted by $G = \langle a \rangle$.
- a is called the generator of the group
- Every subgroup of a cyclic group is cyclic

Examples

- 1. Additive Group of Integers: (Z, +) is cyclic with generator 1.
- 2. Multiplicative Group of Integers Modulo n: (Z/nZ, +) is cyclic.
- 3. Unit Circle Group: Complex roots of unity form a cyclic group.
- 4. Permutation Groups: Certain groups of permutations are cyclic.

Normal Subgroups

- A subgroup N of a group G is called a normal subgroup if gN = Ng for all g in G.
- Alternatively, N is normal if for every g in G and n in N, $gng^{-1} \in N$.
- The normal subgroup is denoted by $N \triangleleft G$.

Properties of Normal Subgroups

- 1. Every subgroup of an abelian group is normal.
- 2. The kernel of a group homomorphism is always a normal subgroup.
- 3. The intersection of two normal subgroups is also normal.
- 4. If N and M are normal subgroups of G, then their product NM is also normal.
- 5. Normal subgroups are the building blocks for quotient groups.

Examples of Normal Subgroups

- 1. The center Z(G) of a group G is always normal.
- 2. The subgroup of scalar matrices in GL(n, R) is normal.
- 3. In the symmetric group S3, the alternating group A3 is a normal subgroup.

Applications of Group Theory

- 1. Cryptography
- 2. Quantum mechanics
- 3. Coding theory
- 4. Chemistry and physics

Conclusion

• Group theory is a fundamental area of mathematics with widespread applications in science, engineering, and technology.